Literature Review On "Stock Market Prediction and Analysis using Hadoop"

Aayush Gaigowal

Student, Institute of Industrial and Computer Management and Research (IICMR), Savitribai Phule Pune University aayushgaigowal1961@gmail.com

Abhishek Behera

Student, Institute of Industrial and Computer Management and Research (IICMR), Savitribai Phule Pune University abhishekbehera19901@gmail.com

Aachal pardeshi

Student, Institute of Industrial and Computer Management and Research (IICMR), Savitribai Phule Pune University achalpardeshi159@gmail.com

Abstract — This Stock market prediction and analysis play a crucial role in assisting stakeholders with investment decisions and maximizing profits. With the advent of big data, the volume and complexity of financial data have increased exponentially, posing challenges for accurate and efficient prediction models. This research paper presents a novel approach to stock market prediction and analysis by leveraging the power of Hadoop, a distributed computing framework. The proposed system integrates Hadoop with the Naïve Bayes algorithm to harness the advantages of parallel processing and data mining techniques. The architecture encompasses various components, including user registration, data upload, prediction analysis, and automation for purchase or sale. By utilizing the Naïve Bayes algorithm, the system considers factors such as previous data, mean calculation, and classification to predict stock market trends. The key benefit of employing Hadoop in this context is its ability to process and analyse vast amounts of financial data efficiently. By distributing the processing tasks across multiple nodes, Hadoop enables faster access to large datasets and enhances the accuracy of predictions. Moreover, the system incorporates the Map Reduce programming model to handle the complexities associated with big data processing. The experimental evaluation of the proposed system demonstrates promising results, achieving accuracy rates of 70- 80% and significantly reducing processing time compared to traditional approaches. Inexperienced investors can rely on the system's output to make informed investment decisions, thereby mitigating risks and improving profitability. Overall, this research paper showcases the potential of utilizing Hadoop and the Naïve Bayes algorithm in stock market prediction and analysis. The proposed system offers a transparent and automated approach, empowering stakeholders with reliable insights and enhancing the efficiency of investment strategies in the dynamic and competitive stock market environment.

Keywords — Stock market prediction, Hadoop, Naïve Bayes algorithm, Big data processing, Data mining

Title: Predictive Analysis of Linear B Cell Epitopes in Immune Function Using Machine Learning Algorithms

Anand Kuralkar, Student, Masters of Computer Applications, Savitribai Phule Pune University <u>kuralkaranand@gmail.com</u> Mobile no. 9373276845

Amrut Nikam,
Student, Masters of Computer Applications, Savitribai Phule Pune University
nikamamrut.16@gmail.com
Mobile No. 7410744119

Akash Awchar
Student, Masters of Computer Applications, Savitribai Phule Pune University
arawchaar4@gmail.com
Mobile No. 7448280784

Abstract - By identifying and neutralizing foreign antigens, the immune system is essential in defending the body against infections. A crucial element of the adaptive immune response, B cells create antibodies that attach to particular antigen epitopes. Understanding immune function and creating efficient vaccines depend on finding linear B cell epitopes, continuous amino acid sequences recognized by antibodies. We present a thorough investigation of the use of machine learning methods for predictive analysis of linear B cell epitopes and their effects on immune function in this research journal. Understanding immune responses and developing efficient vaccines depend heavily on the identification and characterization of B cell epitopes. Linear B cell epitopes, which are surface-addressed continuous amino acid sequences due to their prospective applications in treatments, vaccine development, and the detection of antigens by antibodies, have attracted a great deal of interest. Machine learning (ML) methods have become effective resources for the predictive analysis of linear B cell epitopes in recent years. Reviewing and debating the use of ML algorithms to forecast linear B cell epitopes and their consequences for immune function is the goal of this research journal.

Keywords: B cell epitopes, immune function, machine learning algorithms, linear epitope prediction, vaccine design, antibody production, immunodiagnostics

RESEARCH PAPER ON "PREVENTION OF INTENTIONAL INTEREFERENCE ATTACK ON WIRELESS NETWORK"

Karan Sakunde

Student, Institute of industrial and computer Management and Research (IICMR), Savitribai Phule University

Karansakunde5@gmail.com

Jeevan Lembe

Student, Institute of industrial and computer Management and Research (IICMR), Savitribai Phule University

Jeevanlembe2001@gmail.com

Komal Neware

Student, Institute of industrial and computer Management and Research (IICMR), Savitribai Phule University

Komalneware@gmail.com

Abstract:

An intentional interference attack in a wireless network occurs when a third party deliberately creates interference to disrupt the normal functioning of the network. This can be done to deny eavesdropping capability. Interference can decrease coverage, and capacity, and limit the effectiveness of both new and existing systems. Interfering devices can act like a DoS attack that prevents an 80 radio from transmitting.

Interference is difficult to avoid because wireless communication systems must coexist in complex signal environments consisting of multiple operating wireless networks. Interference has a direct correlation with Quality of Service (QoS). The zone where a transmitting node can be interrupted by a third node during transmission is called the interference range. Interference ranges can significantly affect the throughput in wireless sensor networks due to collisions leading to outages.

Keyword: Firewall, Updating Firmware, Monitoring Network, Intrusion Detection System, Access Points

Examination of Himachal Pradesh University

Name : Mansee Naik

Email Address:

manseenaik3110@gmail.com

Name : Mamta Narwade

Email Address:

mamtanarwade7@gmail.com

Designation : Student's

Abstract: This research paper aims to evaluate the university examination system in Himachal Pradesh, focusing on its effectiveness, efficiency, and alignment with international standards. The study examines various aspects of the examination process, including question paper design, evaluation methods, grading system, and the overall student experience. Data collection methods include surveys, interviews, and analysis of relevant documents. The findings highlight strengths and weaknesses of the current system and propose recommendations for improvement.

Keywords: case study, Himachal Pradesh, qualitative research, question paper design, evaluation methods, grading system, student experience

An Alternative Approach to Resolve Load Balancing Problem in Cloud Computing

Mansi Kishor Sisodiya, Institute of Industrial and Computer Management and Research , Nigdi Pune mansisisodiya223@gmail.com 8600539561

Mayur Deepak Bhavsar, Institute of Industrial and Computer Management and Research , Nigdi Pune Bhavsarmayur341@gmail.com 9372637531

Mokshada Bhandare, Institute of Industrial and Computer Management and Research , Nigdi Pune mokshadabhandare.01@gmail.com 7057171160

Abstract— Cloud computing has a decentralized architecture in which virtual machine migration is one of the major challenges which affects the network performance. To balance the network load, various techniques are designed for the virtual machine migration. In the previous research work, genetic algorithm was proposed for Virtual Machine (VM) migration which can balance the network load. The genetic algorithm is complex in nature which increases the execution time. In this research work, genetic algorithm is improved for VM migration which reduces the execution time and also space and bandwidth utilization.

KEYWORDS— Genetic Algorithm, Virtual Machine migration, Bandwidth utilization